If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.68t^2+8.68t-142.2=0
a = 1.68; b = 8.68; c = -142.2;
Δ = b2-4ac
Δ = 8.682-4·1.68·(-142.2)
Δ = 1030.9264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8.68)-\sqrt{1030.9264}}{2*1.68}=\frac{-8.68-\sqrt{1030.9264}}{3.36} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8.68)+\sqrt{1030.9264}}{2*1.68}=\frac{-8.68+\sqrt{1030.9264}}{3.36} $
| 20x^2+8x-96=0 | | 1.68t^2+6t-142.2=0 | | 2m+4=46 | | 54x-216=1458 | | 4.2+11.7-7.3x=2.1 | | -5=1/5*3+b | | 4n-6=2n+14 | | 1/5y-3=y | | 8x+7=7x+31 | | (2x+2+X)2=154 | | 1000^4=10^x | | A=2}r2 | | √(5x-2)=√12x | | 5p-11=4(6) | | 17850=x+0.19x | | 24.8=n+5.1 | | 5t^2-2t-1=0 | | 5^x²-3x+2=1 | | (-t)/(3t-8)=1/4 | | .05x=4000 | | w+5=29 | | 9x-9+8x-15=180 | | 23x+138=253 | | 8x+7=7(2+x) | | x+144=x+24 | | 9x^2–4=7x | | –8p–15=65 | | x/3+8=x/7-4 | | –23=s–16 | | q2=–4 | | 14–5c=29 | | -5x+8+8x=-1 |